
LLNL-JRNL-515291

Block-Structured Adaptive Mesh
Refinement Algorithms for Vlasov
Simulation

J. A. Hittinger, J. W. Banks

November 21, 2011

Journal of Computational Physics

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Block-Structured Adaptive Mesh Refinement Algorithms for

Vlasov Simulation

J. A. F. Hittinger and J. W. Banks

February 4, 2013

Abstract
Direct discretization of continuum kinetic equations, like the Vlasov equation, are

under-utilized because the distribution function generally exists in a high-dimensional
(>3D) space and computational cost increases geometrically with dimension. We pro-
pose to use high-order finite-volume techniques with block-structured adaptive mesh
refinement (AMR) to reduce the computational cost. The primary complication comes
from a solution state comprised of variables of different dimensions. We develop the
algorithms required to extend standard single-dimension block structured AMR to the
multi-dimension case. Specifically, algorithms for reduction and injection operations
that transfer data between mesh hierarchies of different dimensions are explained in
detail. In addition, modifications to the basic AMR algorithm that enable the use of
high-order spatial and temporal discretizations are discussed. Preliminary results for
a standard 1D+1V Vlasov-Poisson test problem are presented. Results indicate that
there is potential for significant savings for some classes of Vlasov problems.

1 Introduction

The Vlasov-Maxwell system of equations is a fundamental kinetic model that describes
weakly-coupled plasma dynamics. The Vlasov equation is a partial differential equation
in phase space, (x,v) ∈ RN ×RM for N,M ∈ [1, 2, 3] such that M ≥ N , that describes
the evolution in time, t ∈ R+, of a particle distribution function, f(x,v, t) ∈ R+, in the
presence of electromagnetic fields, E(x, t) ∈ RN and B(x, t) ∈ RN . For a particle species
α, the Vlasov equation is

∂fα
∂t

+ v · ∇xfα +
qα
mα

(E + v ×B) · ∇vfα = 0, (1)

where the particle charge and mass are qα and mα, respectively. Both imposed and self-
generated electric and magnetic fields, E and B, respectively, are responsible for the Lorentz
force in (1) and are the solutions of Maxwell’s equations (or a specialization thereof):

∇×E +
1
c

∂B
∂t

= 0, (2a)

c2∇×B− ∂E
∂t

=
j
ε0
, (2b)

∇ ·E =
ρ

ε0
, (2c)

∇ ·B = 0, (2d)

1

where ε0 is the permittivity of free space and c is the in vacuo speed of light. The total
charge density, ρ, and the total current, j, are the sums over contributions from all species
α,

ρ(x, t) =
∑
α

ρα(x, t) =
∑
α

qα

∫
Rd

fα dv, (3a)

j(x, t) =
∑
α

jα(x, t) =
∑
α

qα

∫
Rd

vfα dv, (3b)

and these moments of the distribution function nonlinearly couple Maxwell’s equations to
the Vlasov equation.

The Vlasov-Maxwell system and related models are fundamental non-equilibrium de-
scriptions of plasma dynamics. Non-equilibrium kinetic effects in plasmas play a crucial
role in fusion applications. Understanding and controlling wave-particle interactions is im-
portant to the success of inertial confinement fusion, where resulting resonant responses can
interfere with the intended deposition of laser energy [1]. In magnetic confinement fusion,
gyrokinetic models, which are a reduced form of the Vlasov equations [2–4], are used to
better understand the physical mechanisms controlling the core conditions, in particular
micro-turbulence, which is at the origin of the so-called anomalous transport [5].

The Vlasov model also has applicability beyond fusion plasmas. Collisionless shocks in
astrophysics, which are thought to be driven by electrostatic and electromagnetic instabil-
ities [6–8], can be accurately modeled by the Vlasov-Maxwell system. The Vlasov-Poisson
system, where Gauss’ Law (2c) is sufficient to describe the relationship between the elec-
trostatic field and the charge density, is being used in particle beam accelerator design [9].
Laser isotope separation is another application area for Vlasov-Maxwell models [10].

While these kinetic models may have great relevance, their numerical approximation for
problems of interest have been constrained primarily by computational cost. For N = 3,
the distribution functions in the full Vlasov model have a phase-space domain of six dimen-
sions. Directly discretizing phase space, an approach alternatively referred to as grid-based,
Eulerian, or continuum methods, incurs a computational cost that scales geometrically
with the number of dimensions. Thus, while for over forty years work has been done on
the continuum numerical discretization of the Vlasov equation [11–31], continuum Vlasov
methods have been applied primarily to lower-dimensional – so-called 1D+1V and 1D+2V
– problems. Application of continuum Vlasov to four dimensions (2D+2V) and above has
been limited [30–33]. In contrast, the particle-based particle-in-cell (PIC) [34] method has
dominated kinetic Vlasov simulation. PIC methods use Monte-Carlo sampling techniques in
velocity space to reduce the high-dimensional cost and evolve “clouds” of particles through
a Lagrangian form of the Vlasov equation. Maxwell’s equations, however, are solved on an
overlaid computational mesh (hence, “in cell”). While this approach is generally less ex-
pensive than continuum Vlasov discretization, PIC results contain inherent statistical noise
that generally vanishes only as the square root of the number of particles.

As computer speed and memory have increased, direct discretization of the Vlasov-
Maxwell system has become more feasible, but hardware improvements alone are insuffi-
cient to make full-phase-space, continuum Vlasov codes practical. However, as with PIC
methods, tremendous savings could be realized if continuum approaches could reduce the
number of cells used to represent phase space. One means to this end is to employ adap-
tive mesh refinement and to resolve only those regions of phase space of greatest variation

2

or importance. For instance, block-structured adaptive mesh refinement (AMR) in phase
space could concentrate cells in the vicinity of localized structure, such as particle trapping
regions. In addition, flux-based explicit Eulerian schemes have time-step restrictions that,
for Vlasov, are typically dominated by the maximum particle velocity limits of the phase-
space domain. AMR allows for high-aspect ratio cells in these regions, which can result in
significant increases in time step size without a loss of accuracy, since little particle density
or variation is present at these extreme velocity boundaries.

Adaptive mesh refinement has a limited history in Vlasov simulation. AMR has been
used with PIC methods in the simulation of heavy-ion accelerators [9, 35]. Recent work in
this area uses a wavelet-based approach [23, 25], where the semi-Lagrangian interpolation
is based upon a multi-level wavelet basis and where the local depth of the wavelet hierarchy
is used to increase or decrease the local mesh refinement. This approach generates a near-
optimal grid, but progress in this direction seems to have stalled. It may be the case
that the less regular grid structure may introduce other complications, for example, in the
construction of moments, that make this approach less attractive.

In this paper, we present a block-structured adaptive mesh refinement approach suitable
for the continuum discretization of the Vlasov-Maxwell system. As a proof-of-concept, we
demonstrate the ideas and techniques in the context of a simpler system, the Vlasov-Poisson
model, which is presented in Section 2 along with the basic flux-based Eulerian discretiza-
tion we employ. Thus, we will not address the control of electromagnetic wave reflections at
coarse-fine interfaces; methods to minimize such reflections are addressed elsewhere in the
literature [35, 36]. In Section 3, we discuss the block-structured AMR strategy, its benefits,
and the challenges presented by Vlasov problems. We specifically address a subset of these
issues that we have resolved in order to demonstrate a successful Vlasov-AMR implemen-
tation. Sample calculations are presented in Section 4, and we conclude with a discussion
of the future algorithmic advances that will allow additional gains from AMR applied to
Vlasov simulation.

2 Model Problem and Discretization

Both for our purposes here as well as for many physically interesting problems, the Vlasov-
Maxwell system can be significantly simplified by assuming an electrostatic limit with sta-
tionary ions. The electrostatic limit corresponds to an assumption of small magnetic field
strength. The assumption of stationary ions is appropriate when the ion time scales are
large compared to that of the electrons, which is typically the case. With these assumptions,
the Vlasov equation (1) for the electron probability density function f becomes

∂f

∂t
+ v · ∇xf −E · ∇vf = 0, (4)

under a suitable nondimensionalization. Here E is the electric field, x is the physical space
and v is the velocity. In the electrostatic limit, only Gauss’ law (2c) is relevant. Representing
the electric field in terms of an electrostatic potential, E = ∇xφ, Gauss’ law becomes the
Poisson equation:

∇2
xφ = ρe − ρi =

∫
f dv − 1. (5)

Here the constant, unit background charge, ρi = 1, is the manifestation of the immobile ion
(proton) assumption.

3

For the purposes of discussing the new adaptive discretization algorithms, we make one
final simplifying assumption of a so-called 1D+1V phase space (i.e., one spatial dimension
and one velocity dimension). The final system of governing equations is thus succinctly
written as

∂f

∂t
+ v

∂f

∂x
+
∂φ

∂x

∂f

∂v
= 0, (6a)

∂2φ

∂x2
=
∫ ∞
−∞

f dv − 1. (6b)

Note that, as characteristic of all Vlasov-Maxwell-type systems, we have a higher-dimensional
variable, f(x, v), coupled to a lower-dimensional variable, φ(x).

In order to discretize the model Vlasov-Poisson system, we restrict our attention to a
finite domain. For the physical coordinate we let x ∈ [−L,L] and apply periodic boundary
conditions. Other boundary conditions are also possible, but for the initial-value problems
considered here, a periodic condition is appropriate. For the velocity coordinate, we truncate
the domain and consider v ∈ [vmin, vmax]. This introduces an artificial boundary where we
apply a characteristic boundary condition. Outgoing characteristics are extrapolated and
incoming characteristics carry values from an unperturbed Maxwellian distribution.

Our discretization follows the Eulerian finite-volume formulation developed in [37, 38].
The 1D Vlasov equation (6a) is rewritten in flux-divergence form as

∂

∂t
f +

∂

∂x
(vf)− ∂

∂v
(Ef) = 0. (7)

Phase space is divided into cells using a Cartesian grid with mesh spacings ∆x and ∆v
in the x- and v-dimensions respectively. Integrating over a single computational cell and
dividing by the volume ∆x∆v, we obtain the exact system of ordinary differential equations

d

dt
f̄ij = − 1

∆x

(
〈vf〉i+ 1

2
,j − 〈vf〉i− 1

2
,j

)
+

1
∆v

(
〈Ef〉i,j+ 1

2
− 〈Ef〉i,j− 1

2

)
, (8)

where the cell average f̄ij is defined as

f̄ij ≡
1

∆x∆v

∫
Vij

fdxdv.

As in [37, 38], the angle bracket notation is used to indicate face averages, for example,

〈f〉i+ 1
2
,j =

1
∆v

∫ vj+1/2

vj−1/2

f(xi+1/2, v)dv.

The face-averaged fluxes are approximated to fourth order as

〈vf〉i+ 1
2
,j ≈ v̄j〈f〉i+ 1

2
,j +

∆v
24

(
〈f〉i+ 1

2
,j+1 − 〈f〉i+ 1

2
,j−1

)
,

〈Ef〉i,j+ 1
2
≈ Ēi〈f〉i,j+ 1

2
− 1

48
(
Ēi+1 − Ēi−1

) (
〈f〉i+1,j+ 1

2
− 〈f〉i−1,j+ 1

2

)
.

Notice that, because v is only a function of v and E is only a function of x, the notion of
a face average is redundant, and the angle bracket is replaced by an an overbar. For more
details concerning this high-order finite-volume formalism, refer to [37, 38].

4

The quantity v̄j is directly computed as an exact cell average (recall that v is an in-
dependent variable). The cell-averaged electric field is computed from a potential φ; to
fourth-order, this is

Ēi ≈
1

12∆x
[
8(φ̄i+1 − φ̄i−1)− φ̄i+2 + φ̄i−2

]
.

The cell-averaged potential is obtained by solving a discretization of the Poisson equa-
tion (6b) :

30φ̄i − 16(φ̄i+1 + φ̄i−1) + (φ̄i+2 + φ̄i−2) = 12∆xρ̄i, (9)

where

ρ̄i = 1−∆v
vmax∑

j=−vmax

f̄ij .

This discretization leads to a linear system with a nearly pentadiagonal matrix (boundary
conditions slightly alter the pentadiagonal structure).

For reasons explained in Section 3, the Poisson problem is always represented on the
finest mesh in configuration space, and so the resulting linear algebra problem can be LU-
decomposed once for each level of refinement and stored. Periodic boundary conditions
in x lead to a singular system, which is a well-known problem that is easily addressed by
projecting out the portion of ρ̄(x) residing in the null space of the matrix. This amounts
to ensuring that

∑
i ρ̄(xi) = 0, and in so doing, we ensure that φ̄(x) is normalized around

zero. Of course, since we take a derivative of φ̄(x) to get Ē(x), the offset has no effect on
the solution.

To complete the description of the discretization, a procedure to derive face averages
from cell averages must be identified. We use the scheme developed in [32, 39], which has
the property that, for well-represented solutions, a fourth-order centered approximation is
used. As solution features become sharp on a given mesh, upwind numerical dissipation
is introduced to smooth out those features consistently. The scheme is described in detail
in [32, 39], but we provide a brief overview here as well.

We focus on the determination of the face average 〈f〉i+ 1
2
,j ; other averages follow similar

derivations. The scheme has many similarities to the popular WENO [40] method and uses
many of the tools developed in the literature on that topic. The face average is constructed
as a weighted sum of two third order approximations:

〈f〉i+ 1
2
,j ≈ wi+ 1

2
,j,L〈f〉i+ 1

2
,j,L + wi+ 1

2
,j,R〈f〉i+ 1

2
,j,R, (10)

with
〈f〉i+ 1

2
,j,L ≈

1
6
(
−f̄i−1,j + 5f̄i,j + 2f̄i+1,j

)
(11)

and
〈f〉i+ 1

2
,j,R ≈

1
6
(
2f̄i,j + 5f̄i+1,j − f̄i+2,j

)
. (12)

Here the “L” and “R” indicate left- and right-biased, third-order approximations. With
ideal weighting, wi+ 1

2
,j,L = wi+ 1

2
,j,R = 1

2 , equation (10) becomes the centered, fourth-order
approximation. Using the standard WENO methodology, provisional weights, ŵi+ 1

2
,j,L and

ŵi+ 1
2
,j,R, are determined. To maximize the upwind diffusion in the final numerical method,

5

we assign the larger weight to the upwind, third-order approximation and the smaller weight
for the downwind, third-order stencil. Thus the final weights are determined as

if (vj > 0) ,

{
wi+ 1

2
,j,L = max(ŵi+ 1

2
,j,L, ŵi+ 1

2
,j,R),

wi+ 1
2
,j,R = min(ŵi+ 1

2
,j,L, ŵi+ 1

2
,j,R),

else

{
wi+ 1

2
,j,L = min(ŵi+ 1

2
,j,L, ŵi+ 1

2
,j,R),

wi+ 1
2
,j,R = max(ŵi+ 1

2
,j,L, ŵi+ 1

2
,j,R).

(13)

Note that, as with traditional WENO schemes, convergence rates near certain types of
critical points (points with many zero derivatives) may be less than optimal. Additional
modifications to the provisional weights can be made to alleviate this deficiency [41].

For the temporal discretization of the semi-discrete Vlasov equation (8), any stable
method can be used. We choose the standard explicit fourth-order Runge-Kutta scheme.
At each stage in the Runge-Kutta update, we solve the discrete potential equation (9) prior
to evaluating the phase-space flux divergence as given by the right-hand side of (8).

Consider the ODE initial value problem

df

dt
= L(f, t), (14a)

f(0) = f0. (14b)

The RK4 discretization for the ODE between time level n and n+ 1 is

fn+1 = fn + ∆t
4∑
s=1

bsks, (15a)

ks = L
(
f (s), tn + cs∆t

)
, (15b)

f (s) = fn + αs∆tks−1, (15c)

with α = [0, 1/2, 1/2, 1], b = [1/6, 1/3, 1/3, 1/6], and c = [0, 1/2, 1/2, 1]. Acknowledging
that the operator L is, in our case, of flux-divergence form, we can write, for example, in
one dimension,

fn+1
i = fni + ∆t

4∑
s=1

bski,s, (16a)

= fn −∆t
4∑
s=1

bs

[
Fi+1/2

(
f (s)

)
− Fi−1/2

(
f (s)

)]
, (16b)

= fn −∆t

[
4∑
s=1

bsFi+1/2

(
f (s)

)
−

4∑
s=1

bsFi−1/2

(
f (s)

)]
, (16c)

= fn −∆t
[
F ∗i+1/2 − F

∗
i−1/2

]
, (16d)

where F ∗i+1/2 are accumulated interface fluxes.

6

GC GH

i 0 1 2 3 4 5 6 7j
0
1
2
3
4
5
6
7
8
9

10

x

v

Figure 1: An example of a three-level, block-structured AMR hierarchy. On the left, the
composite refined grid GC is shown. On the right, the corresponding mesh hierarchy GH
with overlapping patches is shown. All patches on the same level have the same refinement
ratio relative to the coarsest level; in this case, the refinement ratios are two and four for the
intermediate and finest levels, respectively. Note that each level is comprised of a collection
of patches completely contained within the patches of the next coarser level.

3 Block Structured AMR Algorithms

Block-structured adaptive mesh refinement [42, 43] is a natural fit for certain Vlasov-
Maxwell problems. Frequently, important fine-scale features in phase space, which could
substantially benefit from higher resolution, only occupy limited regions in phase space. In
contrast to the semi-structured, octree-based grids that were used in the earlier Vlasov-
AMR work [21], hierarchical block-structured AMR is based upon rectangular grid patches
at different refinement levels in a global Cartesian index space, as shown in Figure 1. Using
a local error estimate or some detection of rapid variation in the solution to identify regions
of interest, cells that should be refined are tagged. Tagged cells are grouped and expanded
minimally to form rectangular patches that are inserted into the next level in the hierarchy.
Slightly larger refinement regions can be used to reduce the frequency of regridding. The
refinement process can be repeated recursively to form a hierarchy of refinement levels, each
composed of multiple patches.

Connectivity information is kept to a minimum in this scheme because the global Carte-
sian index space provides a simple mechanism by which to identify the relationships between
patches and levels. Within a level, patches contiguous in indices are neighboring, and across
levels, the same is true, after adjusting by the net refinement ratio between the two levels.
In general, for explicit methods, communication between patches is accomplished through
ghost cells. As an additional savings, by maintaining a consistent solution on all patches,
even those covered by patches on a finer level, time refinement algorithms that allow for
nested subcycling on finer levels can be devised.

Despite all of the previous work on block-structured AMR, applying the technique to
Vlasov simulation introduces several new challenges. First and foremost, at least two mesh

7

hierarchies must be maintained: one in the RN configuration space and one in the RN×RM

phase space. Different kinetic species will, in general, have different masses and temper-
atures; the bulk of the corresponding particles will therefore occupy different ranges of
particle velocity, and the structures arising from resonant responses will occur in different
regions of phase space. Thus, each kinetic species should have its own mesh hierarchy. Thus,
new algorithms for the simultaneous advancement and coordination of multiple hierarchies
are required, and more importantly, efficient algorithms to enable communication between
the hierarchies are required. From a parallel implementation perspective, a hierarchy for
each species also allows for increased task parallelism when each hierarchy is assigned to a
subset of processors; with no collisions, kinetic species only communicate through the lower-
dimensional configuration space, so, given the electromagnetic state, high-dimensional flux
computations and updates can naturally be done in parallel.

In this paper, it is our goal to demonstrate solutions to the fundamental issues that
must be addressed to make effective use of AMR in Vlasov simulation. Specifically, we will
discuss:

• Basic modifications due to discretization. Using high-order finite volume and
a high-order multi-stage schemes departs somewhat from the standard, nominally
second-order block-structured AMR approach. We describe the modified algorithms
we use, for example, the intra-hierarchy interpolation operations and the synchronous
time integration algorithm.

• Inter-hierarchy transfer operations. The coupling of problems of different di-
mension and their representation on separate hierarchies necessitates the creation of
inter-hierarchy reduction and injection transfer algorithms. We discuss algorithms
that achieve this efficiently.

• Regridding for multiple AMR hierarchies. Regridding hierarchies, when multi-
ple related hierarchies are present, requires additional constructs for coordination.

In the following subsections, we address each of these areas, describing in more details
the issues involved and explaining our solution approach. We will not specifically address
efficient parallel decomposition strategies in this work.

These new AMR algorithms, combined with the high-order discretizations presented in
Section 2 have been implemented in the Vlasov code Valhalla1. This code makes use of
the block-structured AMR library SAMRAI [44], which has been used in prior plasma-fluid
simulations [45]. SAMRAI is capable of handling dimensions above three as well as the
simultaneous existence of multiple and lower hierarchies, possibly of different dimension. A
graph-based, distributed implementation of mesh metadata is employed within SAMRAI to
provide excellent scaling to tens of thousands of processors. SAMRAI also provides fairly
sophisticated, high-level AMR algorithm abstractions, but the simultaneous advancement of
multiple related hierarchies, as required by Vlasov-Poisson, does not fit into these integration
strategies and has thus required substantial additional development.

3.1 Basic modifications due to discretization

Our base discretization uses a method-of-lines approach, where spatial operators are first
discretized using a nominally fourth-order spatial discretization and then the resulting semi-

1Vlasov Adaptive Limited High-order Algorithms for Laser Applications

8

discrete system is integrated using the standard four-stage, fourth-order explicit Runge-
Kutta method. Fortunately, for a high-order finite-volume implementation, the restriction
algorithm to obtain a coarse cell average from fine cell averages remains the simple summa-
tion used for lower-order schemes.

3.1.1 Synchronous, multi-stage time advancement algorithm

In practice, an asynchronous process with time step subcycling on finer cells is typically
used for explicit, space-time discretizations [42], but we chose to start with a synchronous
update for simplicity. For a synchronized update (i.e., a single ∆t for all levels), the
RK4 algorithm (15)-(16) for a conservation law on a single-hierarchy is summarized in
Algorithm 1. Looping over stages, the predictor states and fluxes are computed, and the
fluxes are accumulated. The predictor-state algorithm is laid out in Algorithm 2, and the
flux divergence and accumulation algorithm is sketched in Algorithm 3. We note that, for
this conservative form, we accumulate a flux variable as in (16) so that we can construct
a flux divergence using a temporally fourth-order flux for the final update. Such flux
accumulation eliminates an explicit re-fluxing step, since the final update can be done from
finest to coarsest levels, and the accumulated flux can be averaged down so that a single
update using the highest-quality flux can be done on each level. The update is computed
from the accumulated fluxes as shown in Algorithm 4, and regridding is done if a user-
defined number of time steps have elapsed.

Algorithm 1 Multi-Level, Single-Hierarchy Flux-Divergence RK4 Advance
k ← 0
for all Stages s← 1, 4 do

ComputePredictorState(k, s, fpred)
ComputeRHS(fpred, s, k, Faccum)

end for
ComputeUpdate(Faccum, fnew)
if time to regrid then

Regrid all levels
end if
Compute next ∆t

Algorithm 2 Multi-Stage Predictor State Computation
procedure ComputePredictorState(k, s, fpred)

t← told + cs ·∆t
fpred ← fold + αs ·∆t · k
Interpolate up to ghost cells on finer levels of fpred
Exchange ghost cells on each level of fpred
Apply boundary conditions to fpred

end procedure

9

Algorithm 3 Multi-Stage Right-Hand Side Evaluation and Flux Accumulation
procedure ComputeRHS(fpred, s, k, Faccum)

for all Levels l← 1, L do
for all Patches p do

Fpred ← computeFluxes(fpred, t)
end for
Exchange fluxes between patches on level l

end for
for all Levels l← L, 1 do

for all Patches p do
k ← fluxDivergence(Fpred)
Faccum ← Faccum + bs · Fpred

end for
end for

end procedure

Algorithm 4 Multi-Stage, Multi-Level Flux-Divergence Update Computation
procedure ComputeUpdate(Faccum, fnew)

for all Levels l← L, 1 do
for all Patches p do

δf ← fluxDivergence(Faccum)
fnew ← fold + ∆t · δf
Coarsen fluxes down to level l − 1

end for
end for
Coarsen fine data down for fnew

end procedure

To integrate the Vlasov-Poisson system, the time advancement algorithm must be
adapted to allow the simultaneous advancement of multiple phase-space hierarchies. In
addition, the Poisson equation represents an instantaneous constraint, and we chose most
self-consistent strategy of re-evaluating the Poisson equation at each predictor state. An
alternative possibility is to extrapolate φ in time to avoid some of the intermediate field
solves and the associated parallel synchronization; investigating this approach is left for
future work.

The associated modifications to Algorithm 1 are shown in Algorithm 5. The main
differences are that the major steps are each now computed for all hierarchies and that
additional steps to evaluate instantaneous constraints have been inserted on predicted or
updated states are obtained. Note that we do not recompute the potential until after any
possible regridding since the regridding step for the configuration space hierarchy is not
independent of the phase space hierarchies in our current implementation. More details
about this are given in Section 3.3.

10

Algorithm 5 Synchronous, Multi-Stage, Vlasov-Poisson Multi-Hierarchy Advance
k ← 0
for all Stages s← 1, 4 do

for all Hierarchies H do
ComputePredictorState(k, s, fpred)

end for
ComputeInstantaneousConstraints(fpred, φ)
for all Hierarchies H do

ComputeRHS(fpred, φ, s, k, Faccum)
end for

end for
for all Hierarchies H do

ComputeUpdate(Faccum, fnew)
end for
if time to regrid then

Regrid all hierarchies
end if
ComputeInstantaneousConstraints(fnew, φ)
Compute next ∆t

3.1.2 Conservative, limited, high-order interpolation algorithm

Fine-patch cells are filled from coarse cells either when new fine-level patches are created or
when fine-patch ghost cells at coarse-fine interfaces are filled. For second-order discretiza-
tions of first-order differential operators, slope-limited linear reconstruction is generally used
to obtain fine-cell averages from the coarse grid while controlling non-physical oscillations.
To obtain a fourth-order reconstruction while controlling oscillations, several techniques
exist, including least squares [46], unfiltered [47], and explicitly-filtered [48] high-order in-
terpolations. We adopt a slightly different approach and make use of standard WENO5 [40]
interpolants that have been analytically integrated to obtain explicit cell-average interpo-
lation formulas.

We assume cell-averaged data ūi on a coarse mesh with mesh size h and an overlapping
fine mesh with mesh size hf , such that

hfj = hj/Rj , j = 1, 2, . . . , D, (17)

where each Rj is a positive integer. Our goal is to construct a high-order approximation to
fine-mesh cell-averaged values ūfif such that the integral over the fine mesh exactly equals
the integral over the coarse mesh. In addition, since initialization of fine mesh from coarse
mesh may be done in regions of high gradients, we seek an adaptive interpolation scheme
that will inhibit the creation of unphysical oscillations.

For our fourth-order discretization, the five-point WENO5 scheme is sufficient. In the
general approach to obtain an interpolation in cell i, one is given five cell-averages ūi+e,
e = −2,−1, 0, 1, 2, and a location xi−1/2 ≤ x ≤ xi+1/2, as shown in Figure 2. It is useful at

11

xi−1/2 xi+1/2

i−2 i−1 i i+1 i+2

R
i

R
i+

1

R
i+

2

R
i+

3

Figure 2: Relationship of fine to coarse mesh in global index space with a refinement ratio
of R = 4. The five coarse cells shown are used to determine the cell averages in the four
fine cells that subdivided cell i.

this point to define some auxiliary quantities:

Di+n = ūi+n+1 − ūi+n, n = −2,−1, 0, 1, (18a)
∆i+p = Di+p −Di+p−1, p = −1, 0, 1. (18b)

The algorithm proceeds for a uniform mesh as follows:

1. Compute smoothness detectors β(r)
i , r = 0, 1, 2:

β
(0)
i =

13
12

∆2
i+1 +

1
4

(Di+1 − 3Di)
2 , (19a)

β
(1)
i =

13
12

∆2
i +

1
4

(Di +Di−1)2 , (19b)

β
(2)
i =

13
12

∆2
i−1 +

1
4

(3Di−1 −Di−2)2 ; (19c)

2. Compute the absolute interpolation weights α(r)
i , r = 0, 1, 2:

α
(r)
i = dr/(ε+ β

(r)
i)2, (20)

where d0 = 3/10, d1 = 3/5, d2 = 1/10, and ε is a small positive value to avoid division
by zero (typically ε = 10−6);

3. Compute the relative interpolation weights ω(r)
i , r = 0, 1, 2:

ω
(r)
i = α

(r)
i /

(
2∑
s=0

α
(s)
i

)
; (21)

4. Compute the interpolants v(r)
i (x), r = 0, 1, 2:

v
(r)
i (x) = h

2∑
m=1

m−1∑

j=0

ūi+j−r

2∑
l=0
l 6=m

 2∏
q=0
q 6=m,l

(
x− xi−1/2 − h(q − r)

)
2∏
l=0
l 6=m

h(m− l)

; (22)

12

5. Compute the combined interpolant vi(x):

vi(x) =
2∑
r=0

ω
(r)
i v

(r)
i (x). (23)

The result vi(x) is an interpolant constructed from cell average values such that

xi+1/2∫
xi−1/2

vi(x) dx = hūi. (24)

In smooth regions, vi(x) is an O
(
h5
)

approximation pointwise; in regions where under-
resolution generates oscillations, the scheme drops to O

(
h3
)

pointwise (at worst) by adapt-
ing its stencil through the nonlinear weights so as to bias towards interpolations that are
less oscillatory.

For adaptive mesh refinement, we can analytically integrate (22) over the fine-mesh cells
to arrive at simple algebraic equations for the fine-mesh cell-averages. For a refinement
ratio of R, we integrate (22) over each of the intervals [xi−1/2 + sh/R, xi−1/2 + (s+ 1)h/R],

s = 0, 1, . . ., R− 1, (see Figure 2). Define for r = 0, 1, 2, A(r)
i , B(r)

i , and C
(r)
i :

A
(0)
i = ūi + 1

6(2Di+1 − 5Di),
A

(1)
i = ūi − 1

6(Di + 2Di−1),
A

(2)
i = ūi − 1

6(4Di−1 −Di−2),

B
(0)
i = 2Di −Di−1,

B
(1)
i = B

(2)
i = Di−1,

C
(0)
i = ∆i+1,

C
(1)
i = ∆i,

C
(2)
i = ∆i−1.

(25)

Then the three fine-mesh cell-averaged interpolated values in cell (Ri+ s) are(
ūfRi+s

)(r)
= A

(r)
i +B

(r)
i

(
2s+ 1

2R

)
+ C

(r)
i

(
3s2 + 3s+ 1

6R2

)
, (26)

for r = 0, 1, 2. Note that, to ensure exact conservation to round-off, we renormalize the
average of the fine cells to the original coarse cell average by

(
ūfR(i+1)−1

)(r)

renorm
=
(
ūfR(i+1)−1

)(r)
+ ūi −

R−1∑
s=0

(
ūfRi+s

)(r)
/R; (27)

this ensures that the truncation errors are equidistributed amoung the sub-cells.
In implementation, advantage can be made of the many repeated factors. Notably, for

any given coarse cell i, the fifteen auxiliary variables (18) and (25) and the ω(r)
i only need be

computed once for the R fine cells in cell i. Similarly, for a fixed refinement R, the 2(R−2)
functions of s = 0, 1, · · · , R− 2 in (26) are the same for any coarse cell i.

The direct, though not most efficient, extension of the one-dimensional algorithm to
multiple dimensions is to apply the method dimension-by-dimension. Thus, it is sufficient
to build code to handle the 1D problem, and the multi-dimensionality is handled through
data management, i.e., the input provided to the 1D routines and the memory destinations
to which the results are written.

Consider the 2D case where the refinement ratios are R0 and R1 in the x0- and x1-
directions, respectively. An example with R0 = R1 = R = 4 is shown in Figure 3(a). In

13

(a)

R
i

R
i+

1

R
i+

2

R
i+

3

Rj

Rj+1

Rj+2

Rj+3

i−2 i−1 i i+1 i+2

j

j−2

j−1

j+1

j+2

(b)

R
i

R
i+

1

R
i+

2

R
i+

3

i−2 i−1 i i+1 i+2

j

j−2

j−1

j+1

j+2

(c)

R
i

R
i+

1

R
i+

2

R
i+

3

i−2 i−1 i i+1 i+2

j

j−2

j−1

j+1

j+2

Rj

Rj+1

Rj+2

Rj+3

Figure 3: (a) The twenty-five coarse cells in 2D used to interpolate the sixteen fine-cell
averages in cell i for a uniform refinement of R = 4. (b) The cells involved in the partial
interpolation in the x-direction for cell i. The result are the four cell averages that are
fine in the x-direction but coarse in the y-direction. (c) The cells involved in the partial
interpolation in the y-direction for sub-cells at fine-grid location Ri. This is repeated for
all fine-grid locations in the x-direction.

cell i, we first compute cell averages for cells refined only in x0 using (26). This is shown in
Figure 3(b). The result for each cell i is R0 new sub-cell values.

The same operation is then applied in x1-direction, but the input values are no longer
the coarse-grid averages, but are now the partially-refined averages from the previous step.
This is shown in Figure 3(c). The result for each fine cell Ri+ s is R1 sub-cell values, and
since there are R0 x1-interpolations per coarse cell i, R0R1 sub-cell values.

3.2 Inter-hierarchy transfer operations

Data transfer between hierarchies of different dimensionality requires the formulation of
special algorithms and auxiliary data structures. While the injection of lower-dimensional
data in the higher-dimensional space is a straight-forward constant continuation in the
new dimensions, the reduction of higher-dimensional data into the lower-dimensional space
requires the application of an operator across the dimensions that are removed, such as the
integrals in the moment reductions (3).

The application of reductions across an AMR hierarchy is not in itself new. For example,
the computation of mathematical norms is frequently executed on AMR hierarchies, and
any norm is the reduction of higher-dimensional data into a scalar value. Lower-dimensional
slices across a hierarchy are often used for visualization. A special case of such a slice reduc-
tion was developed for the laser-plasma interaction code ALPS [45], where the paraxial light
wave sweeps required plasma densities on lower-dimensional planar slices. The challenge for
the Vlasov system is that the reductions are the result of accumulation. Spatial fidelity and
accuracy must be maintained while accumulating across the velocity dimensions, and such
reductions must be done efficiently and without double-counting (recall the overlapping
mesh hierarchy shown in Figure 1).

In addition to the need to obtain data at equivalent resolution, the act of orchestrating
a reduction operation across a hierarchy in parallel requires several auxiliary structures. In
fact, to preserve generality in the mesh refinement, auxiliary data structures are also helpful
for injection operations. We next discuss two moment reduction algorithms that have been

14

i 0 1 2 3 4 5 6 7

x

Figure 4: The configuration-space composite grid corresponding to the composite grid GC
depicted in Figure 1 after reduction.

developed for the Valhalla code, followed by a brief description of the associated injection
algorithm.

3.2.1 Moment reduction algorithm

Consider the composite grid depicted in Figure 1. Let us assume that we will accumulate on
coarse-grid index j for coarse-grid index i = 1. Along i = 1 there are cells of two resolutions
since there are two cells, j = 7, 8, that have been refined. If we do not preserve the finest
resolution in the accumulation on j, we will lose some known information about the spatial
structure in the remaining x-direction. To preserve the finest-resolution spatial information,
we should subdivide in the x-direction to obtain cells of uniform resolution (in i). Using
this principle, the corresponding composite grid after reduction is shown in Figure 4.

One might consider subdividing coarse cells without spatially reconstructing the data
within the coarse cell, but this would result in an O(h) error in the summation. To see this,
consider that, for a refinement ratio of R, the relationship between a fine grid cell average
and a coarse grid average in a single dimension is

ūfRi+s = ūi − h
(
R− 2s− 1

2R

)
∂xu|i+ 2s+1

2R
+O

(
h2
)
, (28)

where s = 0, 1, . . . , R− 1. Thus, to preserve higher-order accuracy, all coarse data must be
reconstructed before averaging to the finest resolution and before applying the reduction
operation.

One can make use of the limited interpolation operators defined in Section 3.1.2. How-
ever, the data to be reduced should be well-resolved (or else it would have been refined), so a
less expensive option is to use a linear interpolation. One can construct such an interpolant
by averaging over sub-cells the fifth-order interpolant,

v(x) =
2∑

j=−2

γj

(x
h

)
ūi+j +O

(
h5
)
, (29)

with

γ−2(η) =
(
5η4 − 20η3 + 15η2 + 10η − 6

)
/120, (30a)

γ−1(η) =
(
−20η4 + 60η3 + 30η2 − 150η + 54

)
/120, (30b)

γ0(η) =
(
30η4 − 60η3 − 120η2 + 150η + 94

)
/120, (30c)

γ1(η) =
(
−20η4 + 40η3 + 90η2 − 10η − 26

)
/120, (30d)

γ2(η) =
(
5η4 − 15η2 + 4

)
/120, (30e)

15

as was done to arrive at (26). The resuling formula for the fine-mesh interpolations is

ūfRi+s =
2∑

j=−2

bj(s)ūi+j +O
(
h5
)

(31)

with

b−2(s) = (p4(s)− 5p3(s) + 5p2(s) + 5p1(s)− 6) /120, (32a)
b−1(s) = (−4p4(s) + 15p3(s) + 10p2(s)− 75p1(s) + 54) /120, (32b)
b0(s) = (6p4(s)− 15p3(s)− 40p2(s) + 75p1(s) + 94) /120, (32c)
b1(s) = (−4p4(s) + 5p3(s) + 30p2(s)− 5p1(s)− 26) /120, (32d)
b2(s) = (p4(s)− 5p2(s) + 4) /120, (32e)

where

pk(s) =
k∑
j=0

k!
j!(k − j)!

sj . (33)

At this point, it is helpful to introduce some notation. We denote an N -vector of
integers by i = (i0, i1, . . . , iN−1) ∈ ZN and a patch, P, by a pair of N -vectors that indicate
the lower and upper cells of the patch: P = [ilo, ihi]. The restriction from an N -vector to a
(N − 1)-vector by removing the j-th element is restrj , e.g.,

restrj i = (i0, i1, . . . , ij−1, ij+1, . . . , iN−1) ∈ ZN−1. (34)

and we define restrj P = [restrj ilo, restrj ihi]. We also define a replacement operator
replj(a, b) that operates on patches and that replaces the j-th element of the lower and
upper N -vectors by a and b, respectively:

replj(a, b)P = [(i0, i1, . . . , ij−1, a, ij+1, . . . , iN−1), (i0, i1, . . . , ij−1, b, ij+1, . . . , iN−1)]. (35)

A collection of patches at a refinement level l is denoted by Ll, and a patch hierarchy GH
is defined as the set of refinement levels with an N -vector refinement ratio defined between
each level and the coarsest (l = 0), i.e.,

GH = {Ll, 0 ≤ l ≤ L− 1 : ∃ rl+1
l ∈ ZN , 0 ≤ l ≤ L− 2}. (36)

The directional refinement and coarsening operators, Ra,bj and Ca,bj , respectively, refine and
coarsen the j-th direction of a patch by the ratio defined between refinement levels a and
b, that is,

Ra,bj P = replj(R
a,b
j ij , R

a,b
j (ij + 1)− 1)P, (37a)

Ca,bj P = replj(C
a,b
j ij , bCa,bj (ij + 1)− 1c)P, (37b)

where Ra,bj =
∏b−1
l=0 (rl+1

l)j/
∏a−1
l=0 (rl+1

l)j and Ca,bj = 1/Ra,bj .
Again referring to Figure 1, we wish to compute the reduction on the composite grid

GC , but in fact we have the hierarchy grid GH . The standard technique for computing
a reduction across a hierarchy without double counting is to use a mask to zero out the

16

contributions from coarse grid regions that are overlapped by fine grid. Let Pl be the
number of patches in level Ll; let Ia,bj be the the interpolation operator in direction j that
refines the local data from the resolution of level a to that of level b; and let µpi be the
masking operator on patch Pp that sets the data in cell i to zero if the cell is covered by a
patch at a finer level. We further assume, without loss of generality, that the phase-space
integer vector i is ordered in such a way so that elements 0 through N − 1 correspond to
configuration-space indices, and elements N through N + M − 1 correspond to velocity
space indices.

The reduction operation to construct the charge density is

ρic = 1− Vv
N+M−1∑
d=N

Jd−1∑
jd=0

fi = 1− Vv
N+M−1∑
d=N

L−1∑
l=0

Pl−1∑
p=0

jp
d,hi∑

jd=jp
d,lo

µpi

N−1∏
d′=0

I l,L−1
jd′

f li ,

= 1− Vv
L−1∑
l=0

Pl−1∑
p=0

N+M−1∑
d=N

jp
d,hi∑

jd=jp
d,lo

µpi

N−1∏
d′=0

I l,L−1
jd′

f li ,

(38)

where ic =
∏N+M−1
d=N restrd i ∈ ZN is the configuration space index and where Vv =∏N+M−1

d=N hd. In words, the distribution function on each patch p is first refined up to
the finest level in the configuration space directions, then masked, and then accumulated.
Note that the mask operator and the interpolation operator do not commute; after summing
over the velocity -space indices, jd, with a mask, the resulting partial sums would in gen-
eral have discontinuities at mask boundaries. Thus, using a masking procedure, one must
reconstruct in the higher-dimensional space, which is more expensive that reconstructing in
the lower-dimensional space.

To facilitate the inter-dimensional communication, two intermediate data structures are
used. The partial reduction level is a level of overlapping patches at the finest resolution
in configuration space, where the patches are projections of every patch in the phase-space
hierarchy:

Lpartial =

{
N−1∏
d′=0

Rl,L−1
d′

N+m−1∏
d=N

restrd P, ∀ P ∈ GH

}
. (39)

The total reduction level, Ltotal, disjoint covering of patches of the configuration space
domain that, aside from the resolution, is independent of all hierarchies. These structures
are created given a phase-space hierarchy GH and configuration space-hierarchy GcH and
exist until regridding occurs.

17

Figure 5: Graphical depiction of the Mask Reduction Algorithm.

Algorithm 6 Mask Reduction
for all levels L ∈ GH do

for all patches P ∈ L do
Refine data in non-reduction directions
Mask out covered cells
Find patch Pp(P) ∈ Lpartial corresponding to patch P
Sum reduce to partial sum patch Pp

end for
end for
for all patches Pt ∈ Ltotal do

Accumulate data from co-located patches Pp

end for
for all levels L ∈ GcH do

for all patches P ∈ L do
Copy data from co-located patches Pt

end for
end for

In Figure 5, a diagram of the Mask Reduction Algorithm, Algorithm 6, is presented.
The algorithm proceeds as follows. For each patch in the phase space hierarchy, the data
on the patch is first refined in those directions that will remain after the reduction. The
covered regions are then masked out; this is accomplished by using masks that have been
precomputed using a modified communication algorithm2 and stored in the phase space
hierarchy. A one-to-one mapping is used to obtain the configuration-space partial-sum
patch Pp from the pre-computed partial summation level Lpartial that corresponds to the
current phase space patch P. The summation is then executed, and the results are placed

2The mask variable is set to unity everywhere. Then a standard communication algorithm from fine to
coarse levels is executed on the mask variable in the phase space hierarchy, but instead of copying fine data
to coarse cells where overlap occurs, zeros are copied into the coarse cells.

18

in the configuration-space partial summation patch Pp. Once all patches in the phase space
hierarchy GH have been reduced, a communication from the partial summation level Lpartial

to the total reduction level Ltotal is executed using an accumulation operation.3 The total
reduction level at this point contains the total reduction on a set of disjoint patches at the
finest resolution. A standard communication operation from the total reduction level Ltotal

to the configuration space hierarchy GcH completes the data transfer.
We note that the total reduction level is not necessary. One could communicate directly

between the partial summation level and the configuration space hierarchy using an accu-
mulation operation. However, for clarity and ease of implementation, we favored the use of
an intermediate total reduction level.

While the Mask Reduction Algorithm is simple to implement, one might suspect that it
is not as efficient as it could be because interpolation is done in phase space to the original
data. Instead, consider execution of the reduction on the composite grid, GC . Let PC be
the number of patches in GC . In a single dimension:

ρic = 1− Vv
N+M−1∑
d=N

Jd−1∑
jd=0

fi = 1− Vv
PC−1∑
p=0

N+M−1∑
d=N

jp
d,hi∑

jd=jp
d,lo

N−1∏
d′=0

I l(p),L−1
jd′

fpi ,

= 1− Vv
PC−1∑
p=0

N−1∏
d′=0

I l(p),L−1
jd′

N+M−1∑
d=N

jp
d,hi∑

jd=jp
d,lo

fpi ,

= 1−
PC−1∑
p=0

N−1∏
d′=0

I l(p),L−1
jd′

ρPic ,

(40)

where, since the composite grid has no levels, the level index l is a function of the patch
index p and is merely a label indicating the refinement relative to the coarsest patches.
Note the savings of the last step; instead of applying the potentially costly prolongation
operator at every grid level j, it is instead applied to the lower-dimensional partial sums
on each patch. To achieve this simplification, however, an efficient algorithm is needed to
construct the composite grid.

3Instead of copying values from each source patch to each destination patch, values are added from each
source patch to each destination patch.

19

Algorithm 7 Subdivision of patch into composite grid sub-patches
procedure ComputeSubPatches(Pin,Lin,GH)

for all levels L ∈ GH : L > Lin do
S ← Pin

for all patches P ∈ L : P ∩ Pin 6= ∅ do
Pextend ←

∏N+M−1
d=N repld

(
(iinlo)d, (iinhi)d

)
P

for all patches Ps ∈ S do
S ← S − Ps + Ps ∩ Pextend + Ps\(Ps ∩ Pextend)
S ← S − P

end for
end for

end for
return S

end procedure

Such a procedure based on basic box calculus operations is presented in Algorithm 7.
Given a patch Pin and the hierarchy in which it resides, a set of sub-patches S is to be
constructed. Initially, the set of sub-patches is just the original patch Pin. All patches P
from finer levels that overlap the patch are found. In the SAMRAI library, these relation-
ships are already known and can be obtained directly without searching. Each overlapping
patch, then, is extended in the reduction directions, for example, that is, its lower and upper
indices in the reduction directions are replaced by the lower and upper limits of the input
patch Pin:

Pextend =
N+M−1∏
d=N

repld
(
(iinlo)d, (iinhi)d

)
P. (41)

The extended overlapping patch Pextend is then intersected with each patch Ps ∈ S, and
both the intersections and the complements replace the patch Ps in the set. The original
overlap patch P is then subtracted from the set S. The extension ensures that sub-patches
of the greatest extent in the reduction directions can be formed and that subsequent removal
of overlap patches results in rectangular sub-domains.

20

Figure 6: Graphical depiction of the Sub-Patch Reduction Algorithm. It is those steps in
the light purple box that differ from the Mask Reduction Algorithm.

Algorithm 8 Sub-Patch Reduction
for all levels L ∈ GH do

for all patches P ∈ L do
Find patch Pp(P) ∈ Lpartial corresponding to patch P
S ← ComputeSubPatches(P,L,GH)
for all sub-patches Ps ∈ S do

Grow ghost cells in non-reduction directions
Sum reduce data, including ghost cells, to temporary patch Ptmp

Refine data on Ptmp in non-reduction directions
Copy data on interior of Ptmp to partial sum patch Pp

end for
end for

end for
for all patches Pt ∈ Ltotal do

Accumulate data from co-located patches Pp

end for
for all levels L ∈ GcH do

for all patches P ∈ L do
Copy from co-located patches Pt

end for
end for

Using this sub-patch construction procedure, the more efficient Sub-Patch Reduction
Algorithm presented in Algorithm 8 and depicted in Figure 6 can be used. As before,
loops are performed over all patches, but now, for a given patch, the set of sub-patches
are identified. Each of these sub-patches is first grown in the non-reduction directions by
the number of ghost cells necessary for any subsequent prolongation operations. The data
on each sub-patch, including the ghost cells, is sum reduced to a temporary configuration-
space patch of the same resolution. This partial sum data is then refined, and the result is

21

Figure 7: Injection

copied into the corresponding partial sum patch from the partial sum hierarchy. Once all
contributions from all sub-patches are obtained, the reduction algorithm proceeds as before.

Finally, we note that neither reduction algorithm assumes that either the phase-space or
configuration-space hierarchies have a special structure. Because intermediate data struc-
tures are used along with standard communication algorithms, arbitrary meshes could be
used in either dimensions. In addition, these algorithms are applicable in parallel and for
arbitrary dimension.

3.2.2 Injection algorithm

The process of injection from lower to higher dimensions is much simpler. The data, Ei, for
instance, is the same for all phase space locations at index i, that is, Êij = Ei. Nevertheless,
to facilitate the data transfer between hierarchies of different dimensions, it is convenient
to first construct an intermediate configuration-space restricted hierarchy, GrH = {Lrl , 0 ≤
l ≤ L− 1}, where

Lr =

{
N+M−1∏
d=N

restrd P, ∀P ∈ GH

}
, (42)

that is, it is composed of lower-dimensional restrictions of all of the patches in the phase
space hierarchy GH .

22

Algorithm 9 Injection
for all Levels L ∈ GrH do

for all Patches p ∈ L do
copy from co-located patches pc ∈ GcH

end for
end for
for all Levels L ∈ GH do

for all Patches p ∈ L do
find patch pr(p) ∈ GrH corresponding to patch p
either copy from pr into p or use directly

end for
end for

For completeness, the injection transfer algorithm is depicted in Figure 7 and presented
in Algorithm 9. Standard communication copiers are used to fill the restricted hierarchy
GrH from the configuration space hierarchy GcH . A one-to-one mapping exists from every
restricted hierarchy patch to the corresponding phase space hierarchy patch. The restricted
hierarchy data can then be injected into phase space data, e.g., Êij ← Ei. This wastes stor-
age with many repeated values, so in the Valhalla code, we directly access the restricted
hierarchy data when needed.

3.3 Regridding for multiple AMR hierarcies

Working with multiple hierarchies introduces regridding challenges for AMR algorithms.
With a single hierarchy, the user typically defines a regrid frequency. At user-defined times,
refinement criteria are used to identify cells in need of refinement (coarsening), new levels of
rectangular patches are formed containing these flagged cells and are populated, and these
new levels replace old levels in the hierarchy. With multiple hierarchies, one must decide
to what degree to constrain the regridding of each hierarchy. Considerations include the
facilitation of efficient communication between hierarchies, the cost/benefit of adaptation
for each hierarchy, and the degree and nature of dependencies between hierarchies (e.g.,
can the hierarchies refine independently, and if not, are the dependencies one-way or more
complicated?) In the case of Vlasov simulation, coordination is most critical between the
configuration space hierarchy and the phase space hierarchies, where a variety of interme-
diate data structures are required to execute inter-dimensional data transfer.

For the purposes of demonstrating proof-of-principle, we made several simplifying choices.
For 1D+1V Vlasov-Poisson, the electrostatic problem is solved in 1D. When restricted down
to 1D, mesh refinement of features in 2D, such as particle trapping regions, will typically lead
to mesh refinement almost everywhere; hence, there is little advantage to mesh refinement in
configuration space. Furthermore, the cost of the higher dimensional solve by far dominates
the total cost, so there should be little advantage to using mesh refinement to speed-up the
lower-dimensional solve. We therefore elected to require the configuration space mesh to be
uniform at the finest level of refinement of the phase space hierarchy. While the mesh was
decomposed into patches, we did not distribute the configuration space hierarchy across
multiple processors. For higher-dimensional problems, such as 2D+2V Vlasov-Poisson, one
may benefit from distributing the configuration-space hierarchy. However, such a distri-
bution will be over a much smaller number of processors than the phase-space hierarchy

23

Figure 8: Unified Modeling Language depiction of the Observer Design Pattern used
to create notifying hierarchies. In our case, the reduction and injection algorithms for
configuration-space are HierarchyObservers. These observers register themselves with the
phase space NotifyingHierarchy to receive notices about regridding.

simply because there is so much less data and work to distribute in lower dimensions.4

When the phase-space hierarchy was regridded, the configuration-space hierarchy was only
regridded if a new level of refinement was added (removed) in phase space. This scheme
had a secondary advantage of simplifying the Poisson solver; solves were executed on the
uniform, finest mesh level in configuration space and then averaged down to coarser levels,
thereby avoiding the need for a Fast Adaptive Composite (FAC) iterative algorithm [49]. We
note that these are merely choices and not requirements; the algorithms for inter-hierarchy
data transfers defined in Section 3.2 support more general configuration and phase-space
hierarchies.

3.3.1 Managing inter-hierarchy coordination

From the descriptions of the reduction and injection transfer algorithms in Section 3.2, it is
clear that the intermediate data structures, such as the partial sum level or restricted patch
hierarchy, are dependent on the phase and configuration space hierarchies. When regridding
of any of the primary hierarchies occurs, the intermediate data structures must be rebuilt
in order to maintain consistency. To facilitate this, we made use of the Observer Design
Pattern [50] as depicted in Figure 8. The SAMRAI concept of PatchHierarchy was gener-
alized to allow other objects, such as the ReductionAlgorithm and InjectionAlgorithm,
to subscribe to the phase space hierarchy in order to receive messages indicating that the
phase space hierarchy had regridded. Reconstruction of the intermediate data structures
is deferred until a subsequent reduction or injection operation is attempted and a message
from an observed hierarchy is found.

3.3.2 Mesh Refinement Criteria

Finally, selection of mesh refinement criteria can be critical in obtaining optimum AMR
performance. For our purposes here, we chose to apply common heuristic refinement criteria

4For a uniform-grid 2D+2V Vlasov-Poisson code, we have seen in practice that the Poisson solve benefits
from distributed parallelism only when the problem size has grown such that the Vlasov solve occurs across
several thousand processors.

24

to the phase space distribution function. Specifically, we tag cells when

δ1fi + δ2fi > tol (43)

where

δ1fi =

[
1
2

D∑
d=1

∆xd(fi+ed − fi−ed)2
] 1

2

and δ2fi =
1
2

D∑
d=1

∆x2
d|fi+ed − 2fi + fi−ed | (44)

estimate the first two truncation error terms. We do not claim that this is the optimal
choice; it is merely sufficient to demonstrate our algorithms. Other error indicators could
be used, including indicators based on physical principles, such as local estimates of the
location of the trapped-passing boundary. The choice of optimal refinement criteria is
intimately related to problem-specific quantities of interest, so we leave this topic for future
work.

4 Numerical Results

We present results from a Valhalla simulation of the bump-on-tail instability [51, §9.4]
as a basic proof-of-principle of the block-structured AMR approach for Vlasov-Poisson sim-
ulation. We used the same problem specified in our previous discretization work [39]. The
initial distribution function was given by

f = fb(v) (1 + 0.04 cos (0.3x)) , (45)

with

fb(v) =
0.9√
2π

exp
(
−v

2

2

)
+

0.2√
2π

exp
(
−4(v − 4.5)2

)
. (46)

The (x, v) domain was [−10π/3, 10π/3]× [−8, 10] and was periodic in the x-direction. We
initialized the solution with a coarse grid of Nx×Nv = 16×32 and with an initial refinement
in the box [(0, 8), (15, 24)]. This initial mesh configuration allowed for larger time steps,
since the cells along the maximum velocity boundary have a larger aspect ratio. The initial
time step was ∆t0 = 0.01, and this was allowed to adjust to 50% of the local stability
condition based on the linear stability of the fourth-order scheme (See [38]). Time steps
could increase no more than 10% from their previous value, but could decrease by any
amount. The grid refinement criteria tolerance was tol = 0.01, and grid refinement ratios
of r1

0 = [2, 4], r2
1 = [4, 2], and r3

2 = [2, 2] were used. Up to four levels of AMR mesh were
allowed. To isolate the AMR performance issues, we consider the serial performance on a
single node of the LLNL 64-bit AMD Linux cluster hera.

AMR performance is very problem-dependent. When small regions of refinement are
required, in particular, when there are lower-dimensional features in the solution, AMR is
generally a net win. However, there is overhead associated with AMR for which sufficient
problem size reduction is necessary to achieve a net gain in simulation performance. Per-
formance is also highly dependent on the choice of parameters, such as regrid frequency
and refinement tolerances, so the results presented here are meant to demonstrate that our
Vlasov-AMR procedure works and can show savings. Whether or not AMR is useful in

25

Parameter AMR1 AMR2 AMR3

largest patch size
level 0 (32,32) (16,32) (16,32)
level 1 (64,64) (32,128) (32,128)
level 2 (64,64) (128,256) (128,256)

smallest patch size (4,4) (8,8) (8,8)
regrid interval 2 4 8

tag buffer (1,1) (4,4) (8,8)

Table 1: AMR parameters used to define the three test configurations. The parameters
largest patch size and smallest patch size control the largest and smallest allowable
patch sizes level-by-level; if unspecified, the finest specified value is applied to all subsequent
levels. The parameter regrid interval is the frequency, in time steps, at which regridding
occurs. Finally, tag buffer is the number of buffers cells to add around a region tagged
for refinement to facilitate less frequent regridding.

other specific cases and optimal choices for AMR parameters and regridding criteria are
very important issues.

To help elucidate the AMR performance, we considered three AMR parameter config-
urations, as shown in Table 1. The AMR1 case represents an attempt to minimize the
number of refined cells by using smaller patches and more frequent regridding. The AMR2
and AMR3 cases allow for larger patches an less frequent regridding. Thus, these three cases
can give some sense of the trade-offs between reducing the amount of mesh (AMR mem-
ory reduction) and reducing the run time (AMR speed-up). All cases were run using the
Sub-Patch Reduction algorithm with unlimited fifth-order reconstruction unless otherwise
noted.

Figure 9 shows computed approximations of the phase-space distribution function at
t = 22.5 for case AMR1. As expected, we see a concentration of the mesh only in regions
of most rapid variation in the solution, and conversely, we see mesh coarsening in the
the trapping region. At this point in the calculation, the total number of cells is 40784,
compared to 131072 cells in the equivalent fine grid – a reduction of approximately 69%.
In Figure 10, we show the time history of the number of AMR cells plotted against the
instantaneous equivalent fine grid for each AMR parameter configuration. We see that once
adaptivity starts, we can achieve an average reduction of between forty and sixty percent,
depending on the AMR parameters. As expected, the AMR1 case uses the least number
of cells, and the AMR3 case, because of its increased patch size and tagging buffer, uses
the most cells. Considering Figure 9, we see that a lot of the mesh reduction comes in the
velocity (vertical) dimension, and this is expected for each additional velocity dimension in
higher dimensions. In 1D+1V, there is little localization in configuration space. However,
in 2D+2V, there is also the opportunity for spatial localization of the features, which would
result in even more mesh reduction.

In Figure 11, we present the time history of the maximum of the electric field for the
bump-on-tail problem for three different resolutions. This metric is a fairly sensitive measure
of numerical fidelity. In addition to the three AMR parameter cases, we plot the results
from three uniform-grid cases: 64 × 128, 128 × 256, and 256 × 512. We use the finest of
these as a “reference” solution to plot the discrepancy of the electric field maximum. For

26

Figure 9: Example result for the bump-on-tail problem at time t = 22.5 for the AMR1
case. On the left, the distribution function is shown. Boxes outlined in white denote AMR
patches. On the right, the corresponding four-level AMR mesh is shown. The mesh adapts
to resolve the particle trapping region as it forms. Note that the minimum distribution
function is small but negative; no positivity enforcement schemes were used in this calcula-
tion.

the AMR calculations, the finest local resolution is equivalent to the 128 × 256 uniform
mesh. At early times, when the solution has little structure, all of the solutions agree
well. The small up/down differences in the AMR results before t = 10 are due to the
discrete temporal resolution (the AMR cases use larger time steps) of the first two valleys
of the maximum electric field. Around t = 25, one begins to see significant differences in
the coarsest solution, since it cannot resolve as well the features being generated in the
particle trapping region. We can conclude from these results that the 64 × 128 resolution
was insufficient to accurately track the maximum electric field over this time interval; thus
the increased resolution of the AMR is necessary.

By about t = 50, one sees a growing discrepancy between all of the AMR cases and the
equivalent uniform mesh of 128×256; over the interval considered, the discrepancy is roughly
twice as large at its maximum. One explanation for this could be the accumulation of error
over longer integration times. Another likely explanation is that we are not capturing
all of the relevant details with the refined mesh because we are using a simple heuristic
gradient detection algorithm; more problem-specific refinement criteria may perform better.
Nevertheless, the AMR results do track the equivalent uniform mesh results well. Compared
to the finest uniform grid results, the phase of the AMR results is relatively good, but
the amplitude is being under-predicted by an increasing amount over time; there will, of
course, be slightly more dissipation in the coarser results when features appear that cannot
be adequately resolved. These results show that AMR can provide effectively equivalent
results as a uniform mesh. Of course, one must consider the quantities of interest for the
calculation, and suitable choices of AMR parameter and refinement criteria need to be

27

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14
x 10

4

Number of Cells

T
im

e

AMR1: Total Number of Cells
AMR1: Equivalent Fine Grid
AMR2: Total Number of Cells
AMR2: Equivalent Fine Grid
AMR3: Total Number of Cells
AMR3: Equivalent Fine Grid

Figure 10: Time history of the number of cells for the bump-on-tail simulation for the three
AMR parameter configurations. The dashed curves are the number of cells in an equivalent
uniform grid based on the current maximum refinement level, while the solid curves are the
actual number of cells in the AMR hierarchy. Note that around t = 3, 6 and 9, there is some
intermittency in all cases, as the adaptivity adds and removes a small number of patches
at the next finer level.

selected.
In addition to mesh reduction, the potential for decreased time-to-solution by using

AMR is also of interest. As indicated earlier, AMR should have the benefit that the equa-
tions are integrated on fewer cells and that larger time steps can be taken. However,
traditional AMR incurs additional overhead from the regridding and the data transfers
(communication, interpolation, and averaging) between patches on different levels. The
Vlasov-Poisson system has additional overhead due to the reduction and injection opera-
tions between different dimensions.

In Table 2, we provide run times on the hera cluster for the three AMR parameter
cases in comparison to the run time for the equivalent uniform mesh. The AMR1 case, with

Case Time 1 (s) Time 2 (s) Time 3 (s) Avg Time (s) Speed-up

Uniform 1521 1520 1519 1520 1.00
AMR1 2622 2615 2632 2623 0.58
AMR2 1355 1346 1336 1346 1.13
AMR3 960 961 960 960 1.58

Table 2: AMR speed-up on the hera cluster for the three AMR parameter cases. The
average of three results for each case are compared to the average run time for three instances
of the same problem solved using the equivalent uniform mesh.

28

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Electric Field History

t

m
ax

 |E
|

64x128 Uniform
128x256 Uniform
128x256 AMR1
128x256 AMR2
128x256 AMR3
256x512 Uniform

0 20 40 60 80 100
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
Electric Field Difference

t

m
ax

 |E
| −

 m
ax

 |E
| fin

e

64x128 Uniform
128x256 Uniform
128x256 AMR1
128x257 AMR2
128x257 AMR3

Figure 11: Time history of the maximum electric field for bump-on-tail calculations at
several resolutions. Results are from the three AMR configurations in which the finest
resolution is equivalent to a 128 × 256 uniform mesh as well as reference uniform-grid
calculations on meshes of 64 × 128, 128 × 256, and 256 × 512. The left plot shows the
maximum of the electric field. The right plot is the same data, plotted as the difference
from the results from the fine 256× 512 mesh.

refinement every other step, causes significant slow-down of the code; however, in the other
two cases, the time to solution is reduced. As expected, when the regridding frequency is
reduced, the speed-up increases. We note that we have erred conservatively in favor of the
uniform mesh solution; running serially and with a single patch, it incurs no inter-patch
communication costs.

The reasons for the slow-down are obvious when looking at the cost of certain key
operations, as shown in Table 3. Note that more than half the time of the uniform grid
calculation is the routine computeRHS(). In contrast, the amount of time in this routine is
significantly reduced for all AMR calculations, as one would expect, since this routine will
scale with the number of cells. That the AMR time in computeRHS() is no more than 24%
of the total time suggests that the AMR cases are spending a great deal of time in AMR
overhead.

One obvious source of overhead is regridding, the cost for which is accounted in regridHierarchies().
As expected, we see that the AMR1 case spends the most time in regridding while the AMR3
case spends the least. The absolute total time spent in AMR1 regridding is more than ninety
percent of the total time the uniform mesh case spends in computeRHS(). However, for the
AMR3 case, which regrids on every eighth step, the regridding cost is much more reasonable.

The fillData() routine is the top level routine that applies boundary conditions (hence
the non-zero cost even for the uniform grid case), fills patch ghost cells on the interior of
the domain, and fills new patches from patches at the same (i.e., copy) or coarser (i.e.,
interpolate) mesh levels. While fillData() accounts for only 6% of the uniform mesh
calculation total time, it represents 40-60% of the total time for the AMR calculations.
One of the routines that constitutes a significant portion of fillData() is the finite volume
WENO refinement in WENO 2D(); it can be seen that with less frequent refinement, less
time is spent in this routine. Note that, while the absolute time in WENO interpolation

29

Case Exclusive Time (s) Total Time (s)

MultiStageIntegrator::computeRHS()
Uniform 830.6 (55%) 830.7 (55%)
AMR1 169.0 (6.4%) 169.1 (6.4%)
AMR2 170.5 (13%) 170.6 (13%)
AMR3 236.0 (25%) 236.0 (25%)
MultiStageIntegrator::evaluateInstantaneousConstraints()
Uniform 16.40 (1.1%) 115.0 (7.6%)
AMR1 68.89 (2.6%) 272.6 (10%)
AMR2 19.63 (1.5%) 132.5 (9.9%)
AMR3 12.35 (1.3%) 89.76 (9.4%)
xfer::RefineSchedule::fillData()
Uniform 32.25 (2.1%) 94.65 (6.2%)
AMR1 21.95 (0.83%) 1564. (59%)
AMR2 14.54 (1.1%) 751.9 (56%)
AMR3 14.00 (1.5%) 384.3 (40%)
ReductionAlgorithm::reduce()
Uniform 0.8683 (0.06%) 76.56 (5.0%)
AMR1 7.507 (0.29%) 153.5 (5.8%)
AMR2 3.179 (0.24%) 74.75 (5.6%)
AMR3 1.846 (0.19%) 43.31 (4.5%)
MultiStageIntegrator::regridHierarchies()
Uniform 0.000 (0%) 0.000 (0%)
AMR1 72.70 (2.8%) 767.9 (29%)
AMR2 17.48 (1.3%) 203.6 (15%)
AMR3 6.150 (0.64%) 74.41 (7.8%)
ConservativeWENORefine::WENO 2D
Uniform 0.000 (0%) 0.000 (0%)
AMR1 639.0 (24%) 720.2 (27%)
AMR2 382.2 (29%) 411.1 (31%)
AMR3 203.7 (21%) 215.1 (22%)

Table 3: A summary of the costs of six key routines for the three AMR cases and the
equivalent uniform mesh. Exclusive time is the time strictly spent in a routine. Total time
is the time spent in a routine and all subroutines called from that routine.

30

Routine Exclusive Time (s) Total Time (s)

ConservativeHighOrderRefine::WENO 2D()
Mask Reduction 742.6 (27%) 824.3 (30%)
Sub-Patch Reduction 642.5 (24%) 727.5 (27%)
ReductionAlgorithm::reduce()
Mask Reduction 27.14 (0.99%) 245.7 (9.0%)
Sub-Patch Reduction 7.505 (0.29%) 157.9 (5.9%)
ConservativeHighOrderRefine::WENO 1D()
Mask Reduction 0.00 (0%) 0.00 (0%)
Sub-Patch Reduction 5.399 (0.20%) 10.88 (0.41%)

Table 4: Comparison of the processing time of the Mask Reduction and Sub-Patch Reduc-
tion algorithms. Exclusive time is the time strictly spent in a routine. Total time is the
time spent in a routine and all subroutines called from that routine.

decrease monotonically from AMR1 to AMR3, the relative times peak with AMR2; this
is a trade-off between more mesh and less frequent regridding. Furthermore, we note that
the cost of limited, high-order interpolation for the intra-hierarchy interpolations necessary
in AMR is not a cost specific to the Vlasov-Poisson system; an AMR method based on a
higher-order discretization for any PDE system will need to address the efficiency of such
interpolations.

The other two routines shared by all four cases, evaluateInstantaneousConstraints()
and reduce(), are provided to show that these operations spend roughly the same percent-
age of time whether for the uniform mesh or for the AMR cases. Note that evaluateInstantaneousConstraints()
is marginally more expensive for all AMR cases because this routine includes the Poisson
solve, which requires more complicated reductions across the AMR hierarchies. The AMR1
case is more expensive in absolute time because it has more patches to reduce. However,
not that the reductions and constraint evaluations for AMR2 and AMR3 are about the
same cost as or even cheaper than (in absolute time) the uniform case.

Finally, in Table 4, we present some timings for the routines related to the two re-
duction algorithms described in Section 3.2. Note that these results were computed using
WENO interpolation and the AMR1 parameters. For the Mask Reduction, we note that
the WENO 2D routine is called for intra-hierarchy regridding and communication and inter-
hierarchy reduction calls. With the Mask Reduction Algorithm, a great deal of time is
spent in the 2D interpolation routine, and the reductions account for 9% of the total run
time. For the Sub-Patch Reduction, the WENO 2D routine is not called, so its reported
time is strictly from intra-hierarchy regridding and communication calls. With the Sub-
Patch Reduction Algorithm, the time spent in the WENO 2D routine is reduced by roughly
10%, and it is replaced by about 1.3% of additional work in the WENO 1D routine. The
total cost of the Sub-Patch Reduction Algorithm is 64% of the Mask Reduction Algorithm.
The comparative performance is what was anticipated, although, admittedly, for 1D+1V
Vlasov-Poisson, the savings are not dramatic. Nevertheless, in higher dimensions, there will
be a more significant benefit; for 2D+2V Vlasov-Poisson, the Mask Reduction Algorithm
will require four interpolations in each cell in the four-dimensional mesh (scaling like N4),
whereas the Sub-Patch Reduction Algorithm will require only two interpolations in cell in

31

a two-dimensional mesh (scaling like N2).

5 Conclusions

We have demonstrated the application of block structured adaptive mesh refinement to
the 1D+1V Vlasov-Poisson system as implemented in the Valhalla code based on the
SAMRAI AMR library. The primary complication comes from a solution state comprised
of variables of different dimensions. The considerations and algorithms required to extend
standard single-dimensional block structured AMR have been presented. In particular, algo-
rithms for reduction and injection operations that transfer data between mesh hierarchies of
different dimensions were explained in detail. In addition, modifications to the basic AMR
algorithm due to our use of high-order spatial and temporal discretizations were presented.
Preliminary results for a standard Vlasov-Poisson test problem were presented, and these
results indicate that there is potential for savings, both in memory and in compute time,
for at least some Vlasov problems. The effectiveness for any particular problem will depend
intimately on the features of the solution.

There are several obvious directions for future work. Currently, we are working on
generalizing the Valhalla code to 2D+2V and higher dimensions. The SAMRAI library
is quite general and supports arbitrary dimension. Moving to 4D calculations and beyond
opens up several new directions for investigation. When the configuration space problem
is in 2D or 3D, there is potential for savings from adaptivity in configuration space. It
is straightforward to enable this generalization, but it is unclear if the additional cost
of the necessary FAC algorithm and of the AMR overhead will justify the complication,
particularly when the solution time will be dominated by operations in the 4D or higher
phase space. With larger phase-space problems, an efficient parallel decomposition will
be necessary; we have already indicated potential advantages of providing each species a
distinct subset of processors, but empirical results are needed. It also will prove beneficial to
allow for asynchronous time stepping in the AMR advancement; an example of the necessary
modifications to the time advancement algorithm has been shown [46].

Dimensions above three also require additional empirical investigation for AMR effi-
ciency. As indicated earlier, the potential savings from AMR increases geometrically with
dimension, but AMR overhead, much of which scales with the number of cells at coarse-fine
boundaries, also increases with dimension. Whether the overhead costs in 4D and above
negate the savings remains an open issue and must be the subject of future studies.

AMR overhead, even in lower dimensions, still requires further reduction. One clear path
is to make use of hybrid parallelism as multicore architectures become more prevalent. Much
of the computations contributing to AMR overhead are sequentially executed on a node but
are completely independent and thus ideal for task parallelism. Implementations should also
be found that further optimize the conservative, high-order intra-hierarchy interpolations.

Finally, the topic of refinement criteria requires further investigation. Heuristic or a
posteriori error indicators that seek to minimize local error are sufficient but not optimal,
depending on the desired results of the calculation. Most quantities of interest exist in
configuration space, that is, the macroscopic quantities like temperature and density that
can be readily measured in the laboratory. The reductions leading to configuration space
quantities integrate out much of the finer details in phase space, which suggests that it may
be inefficient to resolve all of the finer phase-space structure. Future investigations should

32

consider (i) the phase space resolution requirements to obtain accurate configuration space
quantities of interest and (ii) whether more efficient phase-space refinement criteria can be
formulated based on these configuration-space accuracy requirements.

Acknowledgements

The authors would like to thank Dr. Bruce Cohen, Dr. Richard Berger, and Dr. Stephan
Brunner for their many helpful comments and suggestions.

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344.
This work was funded by the Laboratory Directed Research and Development Program at
LLNL under project tracking code 08-ERD-031. LLNL-JRNL-515291.

References

[1] John D. Lindl, Peter Amendt, Richard L. Berger, S. Gail Glendinning, Sigfried H.
Glenzer, Steven W. Haan, Robert L. Kauffman, Otto L. Landen, and Laurence J.
Suter. The physics basis for ignition using indirect drive targets on the NIF. Phys.
Plasmas, 11(2):339–491, March 2003.

[2] E. A. Frieman and Liu Chen. Nonlinear gyrokinetic equations for low-frequency elec-
tromagnetic waves in general plasma equilibria. Phys. Fluids, 25(3):502–508, March
1982.

[3] T. S. Hahm. Nonlinear gyrokinetic equations for tokamak microturbulence. Phys.
Fluids, 31(9):2670–2673, September 1988.

[4] A. M. Dimits, L. L. LoDestro, and D. H. E. Dubin. Gyroaveraged equations for both
gyrokinetic and drift-kinetic regimes. Phys. Fluids B–Plasma, 4(1):274–277, January
1992.

[5] W. M. Tang and V. S. Chan. Advances and challenges in computational plasma science.
Plasma Phys. Contr. F., 47:R1–R34, 2005.

[6] Erich S. Weibel. Spontaneously growing transverse waves in a
plasma due to an anisotropic velocity distribution. Phys. Rev.
Lett., 2:83–84, Feb 1959. doi: 10.1103/PhysRevLett.2.83. URL
http://link.aps.org/doi/10.1103/PhysRevLett.2.83.

[7] R. Z. Sagdeev. Cooperative Phenomena and Shock Waves in Collisionless Plasmas.
Reviews of Plasma Physics, 4:23, 1966.

[8] D. A. Tidman and N. A. Krall. Shock Waves in collisionless plasmas. Wiley-
Interscience, New York, 1971.

[9] Phillip Colella. An algorithmic and software framework for applied partial differential
equations (APDEC): A DOE SciDAC integrated software infrastructure center, May
2003. http://davis.lbl.gov/APDEC/old/accelerator/index.html.

33

[10] Emmanuel Frénod and Frédérique Watbled. The Vlasov equation with strong magnetic
field and oscillating electric field as a model for isotop resonant separation. Elec. J.
Differ. Eq., 2002(6):1–20, 2002.

[11] Magdi Shoucri and Georg Knorr. Numerical integration of the Vlasov equation. J.
Comput. Phys., 14(1):84–92, January 1974.

[12] C. Z. Cheng and Georg Knorr. The integration of the Vlasov equation in configuration
space. J. Comput. Phys., 22(3):330–351, November 1976.

[13] Alexander J. Klimas. A method for overcoming the velocity space filamentation prob-
lem in collisionless plasma model solutions. J. Comput. Phys., 68(1):202–226, January
1987.

[14] P. Bertrand, A. Ghizzo, T. W. Johnston, M. Shoucri, E. Fijalkow, and M. R. Feix. A
nonperiodic Euler-Vlasov code for the numerical simulation of laser-plasma beat wave
acceleration and Raman scattering. Phys. Fluids B–Plasma, 2(5):1028–1037, May 1990.

[15] M. L. Bégué, A. Ghizzo, and P. Bertrand. Two-dimensional Vlasov simulation of
Raman scattering and plasma beatwave acceleration on parallel computers. J. Comput.
Phys., 151(2):458–478, May 1999.

[16] Eric Fijalkow. A numerical solution to the Vlasov equation. Comput. Phys. Commun.,
116(2-3):319–328, February 1999.

[17] Takashi Nakamura and Takashi Yabe. Cubic interpolated propagation scheme for solv-
ing the hyper-dimensional Vlasov-Poisson equation in phase space. Comput. Phys.
Commun., 120:122–154, 1999.

[18] Francis Filbet, Eric Sonnendrücker, and Pierre Bertrand. Conservative numerical
schemes for the Vlasov equation. J. Comput. Phys., 172:166–187, 2001.

[19] Takashi Nakamura, Ryotara Tanaka, Takashi Yabe, and Kenji Takizawa. Exactly
conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with
directional splitting technique. J. Comput. Phys., 174:171–207, 2001.

[20] T. D. Arber and R. G. L. Vann. A critical comparison of Eulerian-grid-based Vlasov
solvers. J. Comput. Phys., 180:339–357, 2002.

[21] N. Besse and Eric Sonnendrücker. Semi-Lagrangian schemes for the Vlasov equation
on an unstructured mesh of phase space. J. Comput. Phys., 191:341–376, 2003.

[22] M. Brunetti, V. Grandgirard, O. Sauter, J. Vaclavik, and L. Villard. A semi-Lagrangian
code for nonlinear global simuations of electrostatic drift-kinetic ITG modes. Comput.
Phys. Commun., 163:1–21, 2004.

[23] Michael Gutnic, Matthieu Haefele, I. Paun, and Eric Sonnendrücker. Vlasov simula-
tions on an adaptive phase space mesh. Comput. Phys. Commun., 164:214–219, 2004.

[24] Stephan Brunner and E. Valeo. Simulations of stimulated Raman scattering in single
laser hot spots. Technical report, Princton Plasma Physics Laboratory, Princeton, New
Jersey, 2005.

34

[25] Matthieu Haefele, Guillaume Latu, and Michael Gutnic. A parallel Vlasov solver using
wavelet based adaptive mesh refinement. In Proceedings of the 2005 International
Conference on Parallel Processing Workshops. IEEE, 2005.

[26] A. J. Klimas and W. M. Farrell. A splitting algorithm for Vlasov simulation with
filamentation filtering. J. Comput. Phys., 110:150–163, 1994.

[27] Tomo-Hiko Watanabe, Hideo Sugamma, and Tetsuya Sato. A nondissipative simulation
method for the drift kinetic equation. J. Phys. Soc. Jpn., 70(12):3565–3576, December
2001.

[28] Francis Filbet and Eric Sonnendrücker. Comparison of Eulerian Vlasov solvers. Com-
put. Phys. Commun., 150:247–266, 2003.

[29] E. Pohn, M. Shoucri, and G. Kamelander. Eulerian Vlasov codes. Comput. Phys.
Commun., 166:81–93, 2005.

[30] N. J. Sircombe and T. D. Arber. VALIS: A split-conservative scheme for the relativistic
2D Vlasov-Maxwell system. J. Comput. Phys., 228(13):4773–4788, July 2009.

[31] N. Crouseilles, M. Mehrenberger, and E. Sonnendrücker. Conservative semi-Lagrangian
schemes for Vlasov equations. J. Comput. Phys., 229:1927–1953, 2010.

[32] J. W. Banks, R. L. Berger, S. Brunner, B. I. Cohen, and J. A. F. Hittinger. Two-
dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing,
self-focusing, and sideloss. Phys. Plasmas, 18(5):052102, 2011.

[33] D. J. Strozzi, E. A. Williams, H. A. Rose, D. E. Hinkel, A. B. Langdon,
and J. W. Banks. Threshold for electron trapping nonlinearity in langmuir
waves. Physics of Plasmas, 19(11):112306, 2012. doi: 10.1063/1.4767644. URL
http://link.aip.org/link/?PHP/19/112306/1.

[34] Charles K. Birdsall and A. Bruce Langdon. Plasma Physics via Computer Simulation.
The Adam Hilger Series on Plasma Physics. Adam Hilger, New York, second edition,
1991.

[35] Jean-Luc Vay, P. Colella, P. McCorquodale, B. Van Straalen, A. Friedman, and D. P.
Grote. Mesh refinement for particle-in-cell plasma simulations: Applications to and
benefits for heavy ion fusion. Laser Part. Bemas, 20:569–575, 2002.

[36] Jean-Luc Vay. An extended FDTD scheme for the wave equation: Application to
multiscale electromagnetic simulation. J. Comput. Phys., 167:72–98, 2001.

[37] Phillip Colella, Milo R. Dorr, Jeffrey A. F. Hittinger, P. McCorquodale, and Daniel F.
Martin. High-order, finite-volume methods on locally-structured grids. In N. V.
Pogorelov, E. Audit, P. Colella, and G. P. Zank, editors, Numerical Modeling of Space
Plasma Flows: Astronum 2008, volume 406 of Astronomical Society of the Pacific
Conference Series, pages 207–216, San Francisco, 2009. Astronomical Society of the
Pacific.

35

[38] Phillip Colella, Milo R. Dorr, Jeffrey A. F. Hittinger, and Daniel F. Martin. High-order,
finite-volume methods in mapped coordinates. J. Comput. Phys., 230(8):2952–2976,
2011.

[39] Jeffrey William Banks and Jeffrey Alan Furst Hittinger. A new class of nonlinear
finite-volume methods for Vlasov simulation. IEEE T. Plasma Sci., 38(9):2198–2207,
September 2010.

[40] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. Technical Report NASA-CR-97-206253,
NASA Langley Research Center, November 1997.

[41] Andrew K. Henrick, Tariq D. Aslam, and Joseph M. Powers. Mapped weighted essen-
tially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput.
Phys., 207:542–567, 2005.

[42] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys., 53:484–512, 1984.

[43] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
J. Comput. Phys., 82(1):64–84, 1989.

[44] Richard D. Hornung and R. Kohn, Scott. Managing application complexity in the
SAMRAI object-oriented framework. Concur. Comp. Prac. Ex., 14(5):347–368, April
2002. http://www.llnl.gov/CASC/SAMRAI/.

[45] M.R. Dorr, F. X. Garaizar, and J. A. F. Hittinger. Simulation of laser plasma fila-
mentation using adaptive mesh refinement. J. Comput. Phys., 177:233–263, 2002. doi:
10.1006/jcph.2001.6985.

[46] Peter McCorquodale and Phillip Colella. A high-order finite-volume method for hy-
perbolic conservation laws on locally-refined grids. Comm. App. Math. Comput. Sc., 6
(1), 2011. doi: 10.2140/camcos.2011.6.1.

[47] Michael Barad and Phillip Colella. A fourth-order accurate local refinement method for
Poisson’s equation. J. Comput. Phys., 209:1–18, 2007. doi: 10.1016/j.jcp.2005.02.027.

[48] Jaideep Ray, Christopher A. Kennedy, Sophia Lefantzi, and Habib N. Najm. Us-
ing high-order methods on adaptively refined block-structured meshes: Deriva-
tives, interpolants, and filters. SIAM J. Sci. Comput., 29(1):139–181, 2007. doi:
10.1137/050647256.

[49] S. F. McCormick and J. Thomas. The fast adaptive composite grid (FAC) method for
elliptic equations. Math. Comput., 46(174):493–456, April 1986.

[50] Allen Holub. Hollub on Patterns: Learning Design Patterns by Looking at Code.
Apress, 2004.

[51] Nicholas A. Krall and Alvin W. Trivelpiece. Principles of Plasma Physics. McGraw-
Hill, New York, 1973.

36

